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Full-Wave Analysis of Guiding Structures

Using a 2-D Array of 3-D TLM Nodes
Hang .Jin, Member, IEEE, and Riidiger Vakddieck, Senior Member, IEEE

Abstract—This paper introduces a novel TLM approach to the

full-wave analysis of guided wave structures. Instead of using

real pulses as in the conventional TLM method, complex pulses

are used in this new approach. Therefore a non-reciprocal phase
shift in z-direction can be introduced which can be used to

connect the z-arms in a 3-D node directly. As a result, the 3-

D array of 3-D nodes, normally required in the TLM method to

calculate the propagation and attenuation constant, is reduced to
only one mesh unit in z-direction (2-D array of 3-D nodes). The
propagation constant is determined by chosing a value and then
calculating the frequency at which this value is valid from the
Fourier ‘Ikansform of the impulse response. Losses are found by

computing the exponential decay of time harmonic solutions at

the eigenfrequencies of the structure.

I. INTRODUCTION

T HE TRANSMISSION line matrix (TLM) method is a

universal space-time domain technique first described

by Johns and Beurle in 1971 [1]. Since then, several im-

provements have been made by various authors to enhance

its efficiency [2]–[13]. Among them, Hoefer (i.e., [8]–[12])

has contributed significantly to develop the TLM method to

what it is today: a very attractive and flexible numerical

tool to analyze arbitrary electromagnetic field problems. As

a result, the TLM method has received increased recognition

in recent years as a useful numerical tool for the full-wave

analysis of arbitrarily shaped (optical and microwave) guiding

structures [8], [9], [13]. The basic steps in developing the

method involves resonating a section of the guiding structure

by placing shorted planes along the axis of propagation. The

distance L between the shorted planes then equals a quarter

of the guided wavelength of the mode at a frequency which

is determined by the resonant frequency of the cavity. By

changing the distance L, which changes the phase constant

B = XI’2L, and repeating the calculation of the resonant
frequency of the cavity for each ,B, the dispersion characteristic

of a particular structure can be obtained. This conventional

TLM approach employs a three-dimensional (3-D) mesh, The

memory space and CPU-time required often become excessive,

in particular for large and complicated structures where a fine

mesh is necessary. Furthermore, for most design problems

most of the information contained in the time-domain response

is useless. For example, if only the propagation constant of

the fundamental mode within a small frequency range of

interest, there is no way in the conventional TLM method to
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exclude the rest of the mode spectrum, which is inherently

involved in the time-domain response, at the beginning of

the computation. This unwanted frequency information is

carried through the calculation as “computational overhead.”

Therefore, for problems, where there is no need for the time-

domain response, the TLM method was traditionally at a

disadvantage over frequency-domain methods. On the other

hand, the flexibility of the TLM method and its suitability for

contour-driven software, which does not require rewriting the

code when the boundary conditions change, make this method

an attractive CAD tool.

To overcome the aforementioned problem and at the same

time retain the flexibility of the TLM method to analyze

arbitrarily shaped transmission line cross-sections, this paper

introduces a new concept for the TLM full-wave analysis.

This concept is based on the excitation of the TLM mesh

by complex pulses rather than real pulses. By doing so, a

non-reciprocal phase shift in the z-direction can be introduced

to connect the z-arms in a 3-D node directly. As a result,

the 3-D -array of 3-D nodes, normally required in the TLM

method to calculate the propagation and attenuation constant,

can be reduced to only one mesh unit in z-direction, or a 2-

D array of 3-D nodes. The propagation constant ,b is now

chosen and the corresponding frequency is determined from

the Fourier Transform of the impulse response. Although

this approach provides only frequency selective information,

this is in most circuit design or analysis problems all that

is required. Compared to the conventional TLM approach

applied to characterizing dispersive transmission lines, this

new method is computationrtlly significantly more efficient.

To explain the principle procedure of this new method, the

organization of this paper is as follows. Section II introduces

the theoretical steps and describes the implementation of this

new approach into the TLM analysis. Section III presents

the detailed steps leading to the computation of the disper-

sive propagation and attenuation characteristics for arbitrarily
shaped guiding structures. To illustrate the validity of this

new approach, Section IV discusses numerical results for

a variety of homogeneous and inhomogeneous transmission

lines on lossy dielectric substrate and with lossy conductors

of finite metallization thickness. The conclusion is presented

in Section V.

H. THEORY

The TLM method models the electromagnetic field problem

by simulating the guided structure though a three-dimensional

transmission line mesh as shown in Fig. 1. Fly scattering
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Fig. 1. The transmission line matrix in rz plane and the z-axis dependence
of the modal field in a guiding structure.

impulses away from the transmission line junction (node) and

then transferring the input from one node to the next in a fixed

time step At, the problem becomes discrete in both space and

time. This procedure can be described by a scattering event

S relating incident impulses to reflected impulses at the time

step kAt at each node:

kv” = S k V’ (1)

Then a transferring event C’, which relates reflected impulses

to incident impulses in the adjacent node at the next time step

(k+ I) At, yields:

(2)

V’, V“ are, respectively, vectors containing incident and re-

flected voltage impulses at each node. S and C are the

scattering and connection matrices. The solution procedure can

be initialized by launching a primary impulse into one of the

nodes. The output is taken at some point in the mesh. It con-

sists of a series of impulses and contains the information of the

structure analyzed. This is the general solution procedure for

the TLM method for arbitrary electromagnetic field problems.

To appreciate the modifications made in this paper one must

recall that a guiding structure is characterized by propagating

modes which are described by exp ( –j@z), where /3 is the

propagation constant. Hence, for a specific mode, the fields at

plane z = Z1 and z = zz for example (Fig. 1), have only a

phase difference of ~(zz – z1). This a priori knowledge of

the z-dependence of the modal fields in the guiding structure

can be used to simplify the solution procedure of the TLM

method. Suppose one excites the mesh of Fig. 1 by launching

impulses at the nodes along line A-B in axial z-direction with

a step phase difference of /?AZ for adjacent nodes, with A,

being the size parameter in axial direction of the mesh. These

phase relations among the initial impulses will also hold for

successive impulses at other nodes along the axial z direction

as long as the guiding structure does not change along the

propagation path, i.e., the impulse scattering and connection

matrices are identical for all the nodes along the line. The

incident and reflected impulses at nodes z = .ZZ equal the

reflected and incident impulses at nodes z = Z1, except that

there is a decrease of ,B(.w – .zl ) in the phase. Hence. the

incident impulses of lines 9 and 8 at the node z = zz at the

time (k + 1) At, which are the reflected impulses on line 2

and 4 of the next node along the positive z-axis at the time

kAt, equal the reflected impulses on lines 2 and 4 of the node

at z = xl at the time kAt, except that there is a decreaw of

/3(,z2– .zI) in the phase. Similarly, the incident impulses at the

node z = Z1 on lines 2 and 4 at time (k + I) At, which are

the reflected impulses on lines 9 and 8 of the next node along

the negative z direction at the time kAt, equal the reflected

impulses on line 9 and 8 of the node at z = Z2 at the time

kAt, except that there is an increase of ~(.z2 – Zl) in the

phase. If the planes z = ZI and .2 = Z2 are chosen so closely

that only one node in z direction remains between them (that

is Z2 – ZI = A=), one can obtain the relation between the

reflected voltage impulses of the node at the time k At and the

incident voltage impulses of the node at the time (k + 1) At

on the line in z direction (Fig. 2):

k+lv; = exp (–j@, )kV;

k+lv; = exp (–j@%)kv;

k+lv; = exp (+j@h)kv;

k+lvi = exp (+jBA.)~V~ (3)

Where kv~’>k Vz”,k Vgr, k V87 and k+lv; ,k+l V;, k+l V;, k+l. ‘;

are the reflected voltages at the time kAt and the incident

voltages at time (k + I) At, respectively, on lines 4, 2, 9, 8.

At this point it should be emphasized that the novelty of

this approach lies in the fact that the amplitudes of the im-

pulses (Vn, (3)) are complex quantities and not real values as

known from the conventional TLM method. The necessity of

employing impulses with complex amplitudes is self-evident:

impulses with real amplitudes can not satisfy (3). Physically,

an impulse with a complex amplitude can also be interpreted

as a pair of orthogonal real impulses, one for the real part

and one for the imaginary part of the complex amplitude.

Since the scattering and transmission matrices are real, there

is no coupling between the real and the imaginary parts

during scattering and propagation among the nodes. Coupling

between them occurs only through (3). Hence, developing

(3) with its real and imaginary part will result in eight real

equations instead of four complex ones. By linearly combining

two real solutions one obtains formally the same results as

if one would use complex notation right from the start. The

complex notation used in this paper does not change the

TLM algorithm, but simplifies the formulation as well as the

programming significantly.

Since the 3-D node is closed in axial direction as presented
by (3), the iteration procedure for the impulse propagation

and scattering in space needs only be carried out in x, y

directions. This effectively reduces the computational domain

a two-dimensional array of 3-D-nodes which significantly

reduces the memory space and computation time required.

In other words, the normally three-dimensional army of 3-

D-nodes is now reduced to only one slice. Because two

traveling waves in opposite direction (+z and –z) are injected

simultaneously into each node forming a standing wave within

this slice, it is also called the resonating slice. The propagation

constant (/3) is found by using the following procedure. First a

propagation constant is chosen and then impulses are injected

into some of the nodes. These impulses will then propagate
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Fig. 2. The TLM node for all full wave analysis of a guiding structure,

and be scattered among the nodes. Those components of the

electromagnetic fields corresponding to the modal fields of

the guiding structure will be continually enhanced. After a

sufficient number of iterations, the distributions of the impulses

will correspond to the superposition of the modal fields.

The output is taken at some nodes and consists of a series

of impulses. Performing the Fourier transformation on those

impluses, the peaks in the spectrum correspond to the resonant

frequencies of the resonating slice for a given ~. Thus a

relationship is established between the propagation constant

@ and the frequency of the modes of the structure. Each ~

requires a separate TLM run. However, the topology of the

TLM mesh for each of these runs need not be changed, because

the propagation constant in the resonating slice is not related

to the length Az by @ = 7r/2AZ. Hence, different values of/3

can be computed with a fixed value of A.. The conventional

TLM method requires to change the length of the resonator

for each value of /3, which, in turn, requires to

layout of the 3-D mesh.

III. ATTENUATION COEFFICIENT

The computation of the attenuation coefficient

change the

for a Iossy

structure is more involved. In a lossy situation the fields will

decay with time due to the absorption. For instance, at time

kAt, the electric field Ei of the ith mode can be written as:

Ei(kAt) = Ei(0) exp (jw;kAt) exp
(-%’A’) ‘4)

where Wi is the resonance frequency for the ith mode which,

for a given ~, has been found by the previously described

method. Qi is the quality factor of the resonating slice. Since

the fields calculated from the impulse distribution represent

the total fields, which is the superposition of many modal

fields, one needs to extract the component for the ith modal

field. This can be accomplished by performing the Fourier

transformation on the total fields at the resonant frequency Wi

as illustrated below:

~E(kAt)exp (-jw,kAt)

k=O

= fjE’(kAt) .Xp (-jw,kAt)

k=o

.-E’(”)Z’X+G’A’)
:0 (-%’A’)=P(O) ~exp (5)

Here E(kAt) is the total field at time kAt and N is an

integer which is large enough to ensure the fields of all other

modes, except the ith mode, will be cancelled out in (5). By

choosing different values of IV and making a curve fitting, the

quality factor Qi can be obtained from (5). The attenuation

coefficient a for the lossy guiding structure is directly related
to the quality factor Q of the resonator through the following

relationship:

(6)

where bgi is the group velocity of the Ah mode,

IV, NUMERICAL RESULTS

Various calculations and comparisons have been made to

validate this new approach. In the following computations,

the 3-D hybrid symmetrical condensed node [14] is used.
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The choice of the size parameters AZ, AV in the z,y axes

are dictated by the configuration of the guiding structure. In

principle, the size parameter AZ in axial direction, which is the

same for all the nodes of the mesh, can be chosen arbitrarily.

Itisfound, however, that the value of AZ has a considerable

effect on the convergence speed of the computation. The opti-

mum value of AZ has not been found yet. In our calculations,

AZ is set to be (Ai + Am)/2, where Al and Am are the

minimum and maximum values, respectively, of all the size

parameters At, AY in x, y directions throughout the mesh.

The calculation of the attenuation coefficient a requires the

mode group velocity Vg~ (6) which is approximated by the

following finite difference form:

()-dw Awt

‘g’= @ ~=A/3i
(7)

where A/3i is a small change of the propagation constant pi

and Aui is the corresponding change of the resonant frequency

of the resonating slice.

The first calculation is made for a rectangular waveguide

filled with a lossy dielectric. Its cross section is divided into

a uniform 8 x 4 mesh. The relative dielectric constant is

E – 1 and conductivity of the material ffd = 0.0001 S/cm.

T~e–waveguide wall is assumed to be perfectly conducting.

Calculations show that the resonant frequency w converges

much faster than the attenuation coefficient a for a given @.

In the present case, it is found that the change of/3 is within

1% when the iteration number N is more than 500 while

a reaches its stable value after lV = 1000. This is possibly

due to the fact that the resonant frequency for each mode is

only determined by locating the corresponding peak position

in the Fourier transformation spectrum of the output impulses

while for the calculation of a the absolute value of the field

is necessary. Also, only a one step calculation is required per

~ while a requires a two-step procedure. Fig. 3 shows the

calculated results of /3 and a for the fundamental mode TE1o

and the corresponding exact solutions. It is obvious that our

calculated results are in good agreement with the exact ones.

A comparison with other methods is also made. Fig. 4 shows

the TLM results of,6 and those of the mode matching method

fqr a shield suspended coupled dielectric guide [15]. Also here

the comparison is good. Fig. 5 shows the TLM results of /3

and a and those obtained from the finite element method for

a shielded lossy image guide [16]. It is found that the TLM

solutions are close to the FEM results.

Further calculations have been made for more complicated

guiding structures. Fig. 6 shows results for a microstrip line

with lossy conductor and groundplane, finite metallization

thickness and lossy dielectric. Good agreement is found be-

tween experimental data [17], the mode matching technique

[18] and the method presented in this paper. For the metal layer

a selfconsistent approach is used, which means the metal is

considered a dielectric with high conductivity. To incorporate

the lossy groundplane into the TLM algorithm, the following

complex boundary reflection coefficient is used:

Zc – Za
‘= Zc+Za

(8)
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where Ze is the wave impedance inside a perfect conductor

—

(9)

and Za is the characteristic impedance of the attached mesh

lines. It should be noted, that since Zc depends on the

frequency w, the loss calculations for the lossy groundplane via

the complex reflection coefficient needs two steps. For a given
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algorithm would consume on the same serial machine. In

comparison to other frequency-domain techniques, the com-

putation time is smaller or comparable. However, considering

that the method presented is capable of analyzing arbitrary

transmission line cross-sections, including losses and finite

metallization thickness, this method is far more flexible than

most frequency-domain techniques and represents a very good

compromise between flexibility and computational speed.

V. CONCLUSIONS

This paper presented a new concept for the TLM full-wave

analysis of arbitrary guiding structure using a 2-D array of

3-D TLM nodes. In contrast to the conventional 2-D TLM

approach, which can only be used to describe three compo-

nents of the electromagnetic field, this new technique retains

all the characteristics of the 3-D TLM method (necessary to

describe six field components), but requires much less memory

space and CPU-time. The basis for this new technique is that
~t

Fig. 5, Propagation constant and attenuation coefficients versus frequency

for a shielded image guide composed of a lossy dielectric (E~l mode).
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,6, a perfect conducting groundplane is assumed first and the

resonant frequency w is found. Then this w is substituted into

(9) as a first approximation from which the actual resonant

frequency and the loss a will be determined. Comparing

the shift in resonant frequency for the lossless and lossy

case, it is found to be negligible. The total CPU-time per

frequency sample on a SUN SPARC II station is less than

5 min. This is much less than what the conventional TLM

only one slice out of a 3-D mesh of 3-D TLM nodes is used.

This slice can be viewed as a resonant section with dynamic

boundaries. The propagation constant in this resonant section is

chosen and the resonant frequency is determined by a Fourier

transformation of the impulse response. This technique avoids

changing the length of the resonator for each new @,
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