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Full-Wave Analysis of Guiding Structures
Using a 2-D Array of 3-D TLM Nodes

Hang Jin, Member, IEEE, and Riidiger Vahldieck, Senior Member, IEEE

Abstract—This paper introduces a novel TLM approach to the
full-wave analysis of guided wave structures. Instead of using
real pulses as in the conventional TLM method, complex pulses
are used in this new approach. Therefore a non-reciprocal phase
shift in z-direction can be introduced which can be used to
connect the z-arms in a 3-D node directly. As a result, the 3-
D array of 3-D nodes, normally required in the TLM method to
calculate the propagation and attenuation constant, is reduced to
only one mesh unit in z-direction (2-D array of 3-D nodes). The
propagation constant is determined by chosing a value and then
calculating the frequency at which this value is valid from the
Fourier Transform of the impulse response. Losses are found by
computing the exponential decay of time harmonic solutions at
the eigenfrequencies of the structure.

I. INTRODUCTION

HE TRANSMISSION line matrix (TLM) method is a

universal space-time domain technique first described
by Johns and Beurle in 1971 [1]. Since then, several im-
provements have been made by various authors to enhance
its efficiency [2]-[13]. Among them, Hoefer (i.e., [8]-[12])
has contributed significantly to develop the TLM method to
what it is today: a very attractive and flexible numerical
tool to analyze arbitrary electromagnetic field problems. As
a result, the TLM method has received increased recognition
in recent years as a useful numerical tool for the full-wave
analysis of arbitrarily shaped (optical and microwave) guiding
structures [8], [9], [13]. The basic steps in developing the
method involves resonating a section of the guiding structure
by placing shorted planes along the axis of propagation. The
distance L between the shorted planes then equals a quarter
of the guided wavelength of the mode at a frequency which
is determined by the resonant frequency of the cavity. By
changing the distance L, which changes the phase constant
B = w/2L, and repeating the calculation of the resonant
frequency of the cavity for each 3, the dispersion characteristic
of a particular structure can be obtained. This conventional
TLM approach employs a three-dimensional (3-D) mesh. The
memory space and CPU-time required often become excessive,
in particular for large and complicated structures where a fine
mesh is necessary. Furthermore, for most design problems
most of the information contained in the time-domain response
is useless. For example, if only the propagation constant of
the fundamental mode within a small frequency range of
interest, there is no way in the conventional TLM method to
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exclude the rest of the mode spectrum, which is inherently
involved in the time-domain response, at the beginning of
the computation. This unwanted frequency information is
carried through the calculation as “computational overhead.”
Therefore, for problems, where there is no need for the time-
domain response, the TLM method was traditionally at a
disadvantage over frequency-domain methods. On the other
hand, the flexibility of the TLM method and its suitability for
contour-driven software, which does not require rewriting the
code when the boundary conditions change, make this method
an attractive CAD tool.

To overcome the aforementioned problem and at the same
time retain the flexibility of the TLM method to analyze
arbitrarily shaped transmission line cross-sections, this paper
introduces a new concept for the TLM full-wave analysis.
This concept is based on the excitation of the TLM mesh
by complex pulses rather than real pulses. By doing so, a
non-reciprocal phase shift in the z-direction can be introduced
to connect the z-arms in a 3-D node directly. As a result,
the 3-D-array of 3-D nodes, normally required in the TLM
method to calculate the propagation and attenuation constant,
can be reduced to only one mesh unit in z-direction, or a 2-
D array of 3-D nodes. The propagation constant 3 is now
chosen and the corresponding frequency is determined from
the Fourier Transform of the impulse response. Although
this approach provides only frequency selective information,
this is in most circuit design or analysis problems all that
is required. Compared to the conventional TLM approach
applied to characterizing dispersive transmission lines, this
new method is computationally significantly more efficient.

To explain the principle procedure of this new method, the
organization of this paper is as follows. Section II introduces
the theoretical steps and describes the implementation of this
new approach into the TLM analysis. Section III presents
the detailed steps leading to the computation of the disper-
sive propagation and attenuation characteristics for abitrarily
shaped guiding swuctures. To illustrate the validity of this
new approach, Section IV discusses numerical results for
a variety of homogeneous and inhomogeneous transmission
lines on lossy dielectric substrate and with lossy conductors
of finite metallization thickness. The conclusion is presented
in Section V.

II. THEORY

The TLM method models the electromagnetic field problem
by simulating the guided structure though a three-dimensional
transmission line mesh as shown in Fig. 1. By scattering
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Fig. 1. The transmission line matrix in rz plane and the z-axis dependence

of the modal field in a guiding structure.

impulses away from the transmission line junction (node) and
then transfering the input from one node to the next in a fixed
time step A¢, the problem becomes discrete in both space and
time. This procedure can be described by a scattering event
S relating incident impulses to reflected impulses at the time
step kAt at each node:

V=8V ey

Then a transfering event C, which relates reflected impulses
to incident impulses in the adjacent node at the next time step
(k + 1)At, yields:

Vi =C 4 V' 2)

V', V" are, respectively, vectors containing incident and re-
flected voltage impulses at each node. S and C are the
scattering and connection matrices. The solution procedure can
be initialized by launching a primary impulse into one of the
nodes. The output is taken at some point in the mesh. It con-
sists of a series of impulses and contains the information of the
structure analyzed. This is the general solution procedure for
the TLM method for arbitrary electromagnetic field problems.

To appreciate the modifications made in this paper one must
recall that a guiding structure is characterized by propagating
modes which are described by exp (—j8z), where 3 is the
propagation constant. Hence, for a specific mode, the fields at
plane z = 2; and z = z; for example (Fig. 1), have only a
phase difference of 3(z2 — z1). This a priori knowledge of
the z-dependence of the modal fields in the guiding structure
can be used to simplify the solution procedure of the TLM
method. Suppose one excites the mesh of Fig. 1 by launching
impulses at the nodes along line A-B in axial z-direction with
a step phase difference of 3A, for adjacent nodes, with A,
being the size parameter in axial direction of the mesh. These
phase relations among the initial impulses will also hold for
successive impulses at other nodes along the axial z direction
as long as the guiding structure does not change along the
propagation path, i.e., the impulse scattering and connection
matrices are identical for all the nodes along the line. The
incident and reflected impulses at nodes z = 73 equal the
reflected and incident impulses at nodes z = zj, except that
there is a decrease of (3(z2 — 21) in the phase. Hence, the
incident impulses of lines 9 and 8 at the node z = 22 at the
time (k + 1)At, which are the reflected impulses on line 2
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and 4 of the next node along the positive z-axis at the time
kAt, equal the reflected impulses on lines 2 and 4 of the node
at z = z; at the time kAt, except that there is a decrease of
B(23 — #1) in the phase. Similarly, the incident impulses at the
node z = z; on lines 2 and 4 at time (k + 1)A¢, which are
the reflected impulses on lines 9 and 8 of the next node along
the negative z direction at the time kAt, equal the reflected
impulses on line 9 and 8 of the node at 2 = zy at the time
kAt, except that there is an increase of 3(z2 — 21) in the
phase. If the planes z = z; and z = z, are chosen so closely
that only one node in z direction remains between them (that
is 22 — 21 = A,), one can obtain the relation between the
reflected voltage impulses of the node at the time kAt and the
incident voltage impulses of the node at the time (k + 1)At
on the line in z direction (Fig. 2):

k41 Vs = exp (—jBA: )k VY
41V = exp (—jBA. ) Vg
k+1Va = exp (+784.)Vy
exp (+7 04,V 3)

where Vi k V3 Vo'on Ve and 1 Viern Vo1 Vs Vi
are the reflected voltages at the time kAf and the incident
voltages at time (k + 1)At, respectively, on lines 4, 2, 9, 8,

At this point it should be emphasized that the novelty of
this approach lies in the fact that the amplitudes of the im-
pulses (V;,, (3)) are complex quantities and not real values as
known from the conventional TLM method. The necessity of
employing impulses with complex amplitudes is self-evident:
impulses with real amplitudes can not satisfy (3). Physically,
an impulse with a complex amplitude can also be interpreted
as a pair of orthogonal real impulses, one for the real part
and one for the imaginary part of the complex amplitude.
Since the scattering and transmission matrices are real, there
is no coupling between the real and the imaginary parts
during scattering and propagation among the nodes. Coupling
between them occurs only through (3). Hence, developing
(3) with its real and imaginary part will result in eight real
equations instead of four complex ones. By linearly combining
two real solutions one obtains formally the same results as
if one would use complex notation right from the start. The
complex notation used in this paper does not change the
TLM algorithm, but simplifies the formulation as well as the
programming significantly.

Since the 3-D node is closed in axial direction as presented
by (3), the iteration procedure for the impulse propagation
and scattering in space needs only be carried out in x, y
directions. This effectively reduces the computational domain
a two-dimensional array of 3-D-nodes which significantly
reduces the memory space and computation time required.
In other words, the normally three-dimensional array of 3-
D-nodes is now reduced to only one slice. Because two
travelling waves in opposite direction (+z and —z) are injected
simultaneously into each node forming a standing wave within
this slice, it is also called the resonating slice. The propagation
constant (/) is found by using the following procedure. First a
propagation constant is chosen and then impulses are injected
into some of the nodes. These impulses will then propagate

k+1Vy
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Fig. 2. The TLM node for all full wave analysis of a guiding structure.

and be scattered among the nodes. Those components of the
electromagnetic fields corresponding to the modal fields of
the guiding structure will be continually enhanced. After a
sufficient number of iterations, the distributions of the impulses
will correspond to the superposition of the modal fields.
The output is taken at some nodes and consists of a series
of impulses. Performing the Fourier transformation on those
impluses, the peaks in the spectrum correspond to the resonant
frequencies of the resonating slice for a given . Thus a
relationship is established between the propagation constant
( and the frequency of the modes of the structure. Each 8
requires a separate TLM run. However, the topology of the
TLM mesh for each of these runs need not be changed, because
the propagation constant in the resonating slice is not related
to the length Az by 8 = 7 /2A,. Hence, different values of 3
can be computed with a fixed value of A,. The conventional
TLM method requires to change the length of the resonator
for each value of 3, which, in turn, requires to change the
layout of the 3-D mesh.

III. ATTENUATION COEFFICIENT

The computation of the attenuation coefficient for a lossy
structure is more involved. In a lossy situation the fields will
decay with time due to the absorption. For instance, at time
kAt, the electric field E* of the ith mode can be written as:

Wi
2Q;

where w; is the resonance frequency for the ¢th mode which,
for a given (3, has been found by the previously described
method. @; is the quality factor of the resonating slice. Since
the fields calculated from the impulse distribution represent
the total fields, which is the superposition of many modal

Ei(kAt) = E¥(0) exp (jwikAt) exp (— kAt) *)

fields, one needs to extract the component for the ¢th modal
field. This can be accomplished by performing the Fourier
transformation on the total fields at the resonant frequency wj
as illustrated below:

> E(kAt) exp (—jw,kAt)
k=0

E'(kAt) exp (—jwikAt)

M

b
il

0

E*(0) Z exp <— ;5. kAt)

k=0

Wi

N
~ EY(0)) exp (— kAt)
kz:;) 2Q;

Here E(kAt) is the total field at time kAt and N is an
integer which is large enough to ensure the fields of all other
modes, except the ith mode, will be cancelled out in (5). By
choosing different values of /V and making a curve fitting, the
quality factor (); can be obtained from (5). The attenuation
coefficient « for the lossy guiding structure is directly related
to the quality factor ¢} of the resonator through the following
relationship:

)

wi W 1
" 90 T ag (Y ©
B/,

where by; is the group velocity of the ith mode.

IV. NUMERICAL RESULTS

Various calculations and comparisons have been made to
validate this new approach. In the following computations,
the 3-D hybrid symmetrical condensed node [14] is used.
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The choice of the size parameters A, A, in the z,y axes
are dictated by the configuration of the guiding structure. In
principle, the size parameter A, in axial direction, which is the
same for all the nodes of the mesh, can be chosen arbitrarily.
It is found, however, that the value of A, has a considerable
effect on the convergence speed of the computation. The opti-
mum value of A, has not been found yet. In our calculations,
A, is set to be (A; + Ay)/2, where A; and A, are the
minimum and maximum values, respectively, of all the size
parameters A, A, in z,y directions throughout the mesh.
The calculation of the attenuation coefficient o requires the
mode group velocity Vg; (6) which is approximated by the
following finite difference form:

dw Aw,
Vo = (aﬁl ~ BB

where AS; is a small change of the propagation constant f3;
and Aw; is the corresponding change of the resonant frequency
of the resonating slice.

The first calculation is made for a rectangular waveguide
filled with a lossy dielectric. Its cross section is divided into
a uniform 8 X 4 mesh. The relative dielectric constant is
e, = 4 and conductivity of the material 05 = 0.0001 S/cm.
The waveguide wall is assumed to be perfectly conducting.
Calculations show that the resonant frequency w converges
much faster than the attenuation coefficient o for a given 3.
In the present case, it is found that the change of 3 is within
1% when the iteration number N is more than 500 while
o reaches its stable value after N = 1000. This is possibly
due to the fact that the resonant frequency for each mode is
only determined by locating the corresponding peak position
in the Fourier transformation spectrum of the output impulses
while for the calculation of o the absolute value of the field
is necessary. Also, only a one step calculation is required per
B while « requires a two-step procedure. Fig. 3 shows the
calculated results of 3 and « for the fundamental mode TEqg
and the corresponding exact solutions. It is obvious that our
calculated results are in good agreement with the exact ones.

A comparison with other methods is also made. Fig. 4 shows
the TLM results of S and those of the mode matching method
for a shield suspended coupled dielectric guide [15]. Also here
the comparison is good. Fig. 5 shows the TLM resulits of 3
and o and those obtained from the finite element method for
a shielded lossy image guide [16]. It is found that the TLM
solutions are close to the FEM results.

Further calculations have been made for more complicated
guiding structures. Fig. 6 shows results for a microstrip line
with lossy conductor and groundplane, finite metailization
thickness and lossy diclectric. Good agreement is found be-
tween experimental data [17], the mode matching technique
[18] and the method presented in this paper. For the metal layer
a selfconsistent approach is used, which means the metal is
considered a dielectric with high conductivity. To incorporate
the lossy groundplane into the TLM algorithm, the following
complex boundary reflection coefficient is used:

_Zc—Za
T Zc+ Za
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Fig. 3. Propagation constants and attenuation coefficients versus frequency
for a rectangular waveguide filled with a lossy dielectric.
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Fig. 4. Variation of 3/ 8, versus frequency in a shielded suspended coupled
dielectric guide.

where Zec is the wave impedance inside a perfect conductor

[ .
Jec= ]| —
c 20(1+])

and Za is the characteristic impedance of the attached mesh
lines. It should be noted, that since Zc depends on the
frequency w, the loss calculations for the lossy groundplane via
the complex reflection coefficient needs two steps. For a given

)
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for a shielded image guide composed of a lossy dielectric (EY, mode).
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Fig. 6. Effective permittivities and attenuation coefficients versus frequency
for a microstrip line with lossy conductor and groundplane, finite metallization
thickness and lossy dielectric (W = 0.55 mm, 2 = 0.2 mm, ¢ = 0.006 mm.
The material parameters are: (1) GaAs: ¢, = 12.9,tané = 3 x 107%;
(2) Dielectric-layer: ¢, = 3.4,tané = 0.05; (3) Strip and groundplane
metallization: x = 17700 s/mm.

0, a perfect conducting groundplane is assumed first and the
resonant frequency w is found. Then this w is substituted into
(9) as a first approximation from which the actual resonant
frequency and the loss o will be determined. Comparing
the shift in resonant frequency for the lossless and lossy
case, it is found to be negligible. The total CPU-time per
frequency sample on a SUN SPARC II station is less than
5 min. This is much less than what the conventional TLM

algorithm would consume on the same serial machine. In
comparison to other frequency-domain techniques, the com-
putation time is smaller or comparable. However, considering
that the method presented is capable of analyzing arbitrary
transmission line cross-sections, including losses and finite
metallization thickness, this method is far more flexible than
most frequency-domain techniques and represents a very good
compromise between flexibility and computational speed.

V. CONCLUSIONS

This paper presented a new concept for the TLM full-wave
analysis of arbitrary guiding structure using a 2-D array of
3-D TLM nodes. In contrast to the conventional 2-D TLM

approach, which can only be used to describe three compo-

nents of the clectromagnetic field, this new technique retains
all the characteristics of the 3-D TLM method (necessary to
describe six field components), but requires much less memory
space and CPU-time. The basis for this new technique is that
only one slice out of a 3-D mesh of 3-D TLM nodes is used.
This slice can be viewed as a resonant section with dynamic
boundaries. The propagation constant in this resonant section is
chosen and the resonant frequency is determined by a Fourier
transformation of the impulse response. This technique avoids
changing the length of the resonator for each new 3.
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